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A logicoalgebraic approach to the geometry of Lagrangian systems is pursued by 
starting axiomatically with a classical mechanical system whose logic is a 
separable and atomic Boolean o algebra. 

1. INTRODUCTION 

The logicoalgebraic approach to classical mechanics conceives the logic 
of all experimentally verifiable propositions concerning a mechanical system 

as a Boolean o algebra E; states and observables are then described as 
probability measures on E and o homomorphisms from the Borel structure 
of real line R onto E, respectively (see Varadarajan, 1968 and 1970, for 
relevant algebraic definitions). We shall be precisely concerned with a 
separable and atomic Boolean a algebra ~. Separability indeed corresponds 
to finiteness of degrees of freedom, i.e., to existence of a finite complete 
system of observables (Kronfli, 1970). Atomicity then corresponds to de- 
terminism, i.e., to existence of a subset 6) of states in which strict values of 
all observables can be checked (Barone and Galdi, 1979); o~ turns out to be 
the set of deterministic or pure states--probabil i ty measures with 0 and 1 
values only--which may be as well characterized as measures concentrated 
at atoms of E. 

On the other hand, the Lagrangian-geometrical approach to classical 
mechanics describes a deterministic system with finite degrees of freedom Y. 
as a Lagrangian system (Q, L), where Q is a differentiable configuration 
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space (defined by constraint equations) and L is a Lagrangian function on 
tangent bundle TQ (difference between kinetic and potential energies), 
which defines an isomorphic Legendre transformation from TQ to cotan- 
gent bundle T*Q. States and observables are then described as points of, 
and real-valued functions on, phase space TQ, or T*Q (see Abraham and 
Marsden, 1978, for relevant geometrical definitions). 

Now the question arises whether, starting axiomatically with a separa- 
ble and atomic Boolean o algebra ~, one can achieve the above theory of 
Lagrangian systems. 

(i) Let us first remark that transition from the algebraic to geometrical 
point of view necessarily requires a set-theoretical representation of abstract 
algebra ft. 

As is well known, the whole representation theory of Boolean o 
algebras is essentially held by the fundamental Loomis theorem (Loomis, 
1947), which, for a separable Boolean a algebra I~, comes out to claim the 
existence of a (nonunique) standard Borel space with a Borel structure o 
epimorphic to t~ (Varadarajan, 1968). 

being atomic too, Loomis theorem may be further specialized and the 
result is a representation theorem (Section 2) which claims the existence of a 
(nonunique) separable Borel space with a Borel structure o isomorphic to ft. 

Any such space gives pure states and observables of ~ the set-theoreti- 
cal description we just expect of a phase space, and will be then called a 
Borel phase space of ~. 

(ii) Let us then remark that this array of Borel phase spaces cannot be 
reduced to a single one whose geometry does correspond to kinematics of E, 
as long as any preferred structure of observables is not explicitly associated 
with 1~. Kinematics indeed--i.e. ,  physical-geometrical description of states 
of Z - - i s  not to be thought of as an intrinsic feature of E, uniquely exhibited 
by its logic ~, but just as an additional structure of observables to be 
associated with ~, whose choice is based upon observer's physical-geometri- 
cal criterions. 

In this connection (Section 3) any equivalence class H of complete 
systems of fundamental observables (position and velocity) will be called a 
kinematics on t~. 

If u ~ H, then a Borel phase space P which characterizes states of t~ in 
terms of strict values of u and any other observable of ff as a function of 
these values, is uniquely determined. 

(iii) The above result allows us (Section 4) to introduce a classical 
holonomy condition on H, by means of suitable constraint equations on 
strict values of u; a differentiable configuration space Q is so associated 
with ~ and P identified with velocity phase space TQ (in this case P, as a 
Borel space, is standard and then ~ will be said to be standard too). 
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A Lagrangian observable A, satisfying a strong hyperregularity condi- 
tion, is then able to identify P with momentum phase space T*Q. 

Both hoionomy and hyperregularity condi t ions-- together  with conse- 
quent bundle structures on P - - a r e  shown to be invariant under kinemati- 
cally equivalent transformations of fundamental observables u. 

Then a standard logic ff endowed with a holonomic kinematics H and a 
hyperregular Lagrangian A, will be the final logicoalgebraic definition of 
Lagrangian system. 

2. BOREL PHASE SPACE 

Let ~ be a separable and atomic Boolean o algebra (whose partial 
order, zero and meet are < ,  O, and A, respectively). 

Owing to separability, the Loomis representation theorem may be 
stated as follows. There exists a o epimorphism 

.:$(x)--,c (I) 

from the Borel structure ~ ( X )  of a standard Borel space X onto C; X 
stands for R [Varadarajan, 1968, p. 17, Theorem 1.6(i)] or any other 
standard Borel space with the power of the continuum, all of them being 
Borel isomorphic (Varadarajan, 1970, p. 3). 

Owing to atomicity, the Loomis theorem will be further specialized as 
follows. 

Let 

e = (x x / . ( ( x ) )  o) (2) 

be the subset of X that u bijectively maps onto the set of atoms of 
(Kronfli, 1970, p. 396, Theorem 2). 

Theorem 1. There exists a a isomorphism 

(3) 

from the Borel structure ~ ( P )  = (E  n P ) E ~ ( x )  of P onto E. 

Proof. Atomicity of ~ entails the following lemma. 
For any two E I, E 2 ~ ~ E I n P = E z N P iff u ( E i )  = u(E2).  
In fact, remark that (if E stands for E I - E z, or E z - E I)x ~ E N P iff 

0 ~ u( (x) )  < u ( E ) ,  and then E o P ~:O iff u ( E )  ~ O. 
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The above lemma entails the existence of a natural o isomorphism 

u, : ~ ( e )  --, ~ (x)/,:o~.> 

from ~ ( P )  onto the quotient of ~ ( X )  modulo the kernel of u. 
Then, if o isomorphism 

u2: ~( X)/Ke~u)--" 

is the quotient of u modulo Ker(u), a isomorphism (3) is given by 

~p=u2ou  t �9 (3') 

P is a separable Borel space [it is standard iff P~~ see 
Varadarajan, 1970, pp. 2 and 3]. 

o Isomorphism rp bijectively takes any point x of P to pure state p of t~ 
given by the probability measure concentrated at atom 9~((x)), and any 
real-valued Borel function f on P to observable v of ~ given by v = cp o f - i; 
the result is p(v(( f (x) ) ) )= 1, i.e., f ( x )  is the (unique) strict value of v in p. 

So pure states and observables of f are characterized as points of, and 
functions on P, just as we expect of a phase space. 

We are then led to state the following: 

Definition 1. A separable Borel space whose Borel structure is o iso- 
morphic to E, is called a Borel phase space of E. 

Theorem 1 shows the existence of many different Borel phase spaces 
of ~. 

3. KINEMATICS 

Let u be a o epimorphism (1), with 

X =  R N 

It characterizes a complete system of observables, given by 

u , = u o p ,  ' ( i = 1  . . . . .  N )  (1') 

where Pi is the ith coordinate projection of R N onto R [Varadarajan, 1968, 
pp. 17 and 18, Theorem 1.6(ii)]. 

Let P be the Borel phase space associated with u by equation (2). 
It characterizes pure states of E in terms of the strict values of 

observables (1') and any other observable of E as a function of these values, 
according to the following: 
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Theorem 2. The following equality holds true: 

p = ( ( x i )  ~ R N / q p  ~ o~: p ( u i ( ( x i ) )  ) = 1 ( i  = 1 . . . . .  N ) )  
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Proof. For any x = ( x i ) ~  R N, u ( ( x ) ) =  /~ iN__ lUi((Xi)). 
Therefore, if u ( ( x ) ) ~ O ,  then probabili ty measure p ( u ( ( x ) ) ) =  1 con- 

centrated at atom u((x) )  satisfies condition p(  u j ( ( x i ) ) )=  1 ( i = 1 . . . . .  N ). 
Conversely, if p(ui((x~)))  = 1 (i = 1 . . . . .  N) ,  then p ( u ( ( x ) ) ) =  1 and 

u((x))  * O. �9 
In particular, if 

RN = TR" 

observables (ui),i ~ (I  ..... n },whose strict values are coordinates in the base 
space of TR",  will be called position observables; observables (u j), j ~ (n + 
1 . . . . .  2n -- N }, whose strict values are coordinates in the standard fibre of 
TR",  will be called velocity observables. 

According to Theorem 2, P will have to be regarded as the set of all 
possible values of position and velocity coordinates. 

On the other hand, any diffeomorphism k of R" def ines-- through 
tangent automorphism T k - - a  transformation of position and velocity coor- 
dinates, which corresponds to the transformation of position and velocity 
observables u' = u o Tk  - 1 

This defines a kinematic equivalence relation K among complete sys- 
tems of observables (of even order). 

We are then led to state the following: 

Definition 2. Any K equivalence class H is called a kinematics on ~. 

4. LAGRANGIAN S YS TEM 

Let H be a kinematics on ~. 
Then let P be the Borel phase space associated with a system u ~ H. 
Assume that 

(i) P = K e r ( T f )  

where T f i s  the tangent morphism of a differentiable map f :  R" -o RS(s < n) 
that, if nonvanishing, has a derivative of maximal rank on 

Q = Ker( f ) 
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Holonomy condition (i) corresponds to the existence of constraint 
equations involving only position coordinates, which define a differentiable 
configuration space Q; equations inferred from the previous ones by deriva- 
tion then identify P with velocity phase space TQ (see, e.g., Abraham and 
Marsden, 1978, p. 49). 

Theorem 3. Holonomy condition (i) is K invariant. 

Proof. It is enough to remark that, if u ' =  u o Tk - ~ ~ H, then Tk maps 
P onto P '  (the Borel phase space associated with u') and Ker(Tf)  onto 
Ker(Tf') ,  with f ' =  f o k - i  �9 

We may then state the following: 

Definition 3. H is called a holonomic kinematics on t~ if condition (i) 
holds true. 

Remark that, if H is a holonomic kinematics, Borel phase space P 
associated with u ~ H is standard (in fact, owing to condition (i), P 
o~ ( TR" )). 

Then only standard logics, i.e., Boolean o algebras which admit of 
standard Borel phase spaces, will be now taken into account. 

Let H be a holonomic kinematics on a standard logic t~, and A an 
observable associated with l~ called Lagrangian. 

Then, if u ~ H and r is the o isomorphism inferred from u by equation 
(Y), let 

L : P ~ R  

be the Borel function characterized by A = r o L -  I, and, when L is differen- 
tiable, 

F L  : P ~ T*Q 

its fibre derivative (which is a bundle morphism from P = TQ to T 'Q;  see 
Abraham and Marsden, 1978, p. 209). 

Assume the following: 
(ii) L is a differentiable function, and FL is a vector bundle isomor- 

phism. 
Strong hyperregularity condition (ii) corresponds to a Legendre trans- 

formation F L  which identifies P with momentum phase space T*Q 
(Abraham and Marsden, 1978, p. 223). 

Theorem 4. Hyperregularity condition (ii) is K invariant. 
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Proof. Let u' = u o Tk  - t ~ H.  

Then o isomorphism r inferred from u' by equation (3') is related to ~0 
by 

cp'= rp o T~ - t  

where ~ = kiQ. 

As a consequence, Borel function L ' : P ' ~  R characterized by A = 
~0' o L ' -  ~ is related to L by 

L ' = L o T ~  - I  

This entails differentiability of L'  and commutativity of diagram 

F L  
P ~ T*Q 

T~r T~* 

P'  ~ T*Q'  
FL '  

[where Q' = Ker ( f ' )  and ~* is the transpose of ~]. �9 
We may then state the following: 

Definition 4. A is called a hyperregular Lagrangian on (~, H )  if condi- 
tion (ii) holds true. 

Therefore the following logicoalgebraic definition of Lagrangian system 
is achieved. 

Definition 5. A Lagrangian system 

is given by a standard logic E, a holonomic kinematics H on ~, and a 
hyperregular Lagrangian A on (t~, H).  
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